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Abstract. In a networked anagram game, each team member is given a
set of letters and members collectively form as many words as possible.
They can share letters through a communication network in assisting
their neighbors in forming words. There is variability in behaviors of
players, e.g., there can be large differences in numbers of letter requests,
of replies to letter requests, and of words formed among players. There-
fore, it is of great importance to understand uncertainty and variabil-
ity in player behaviors. In this work, we propose versatile uncertainty
quantification (VUQ) of behaviors for modeling the networked anagram
game. Specifically, the proposed methods focus on building contrastive
models of game player behaviors that quantify player actions in terms
of worst, average, and best performance. Moreover, we construct agent-
based models and perform agent-based simulations using these VUQ
methods to evaluate the model building methodology and understand
the impact of uncertainty. We believe that this approach is applicable to
other networked games.

Keywords: Networked anagram games · Uncertainty quantification ·
Contrastive performance · Model explainability

1 Introduction

1.1 Background and Motivation

Anagram games is a class of games where players are given a collection of letters
and their goal is to identify the single word, or as many words as possible,
that can be formed with these letters. Almost always, there is a time limit
imposed on the game. Common anagram games include Scrabble and Boggle.
In the literature, individual anagram games have been used to determine how
players attribute their success or failure. It was found that players who performed
well attributed their success to skill and those that performed poorly attributed
their failure to bad luck [18]. Clearly, there can be heterogenous and contrastive
behaviors among players of an anagram game.
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Our interest is networked group anagram games (NGAGs) [5,15], where play-
ers are arranged in a network configuration. They can share letters wherein play-
ers request letters from their neighbors and these neighbors decide whether or
not to reply with the requested letters. The team’s goal is to form as many words
as possible. Figure 1 shows an illustrative game among five players, with initial
letter assignments, and a sequence of player actions over a portion of the 5-min
game (time is in seconds). In our experiments, each letter has infinite multiplic-
ity: if player vi shares a letter g with neighbor vj , then vi retains a copy of the
letter that it shares with vj . Note that the game configuration, and our analyses,
account for agents (game players) with different degrees.

Fig. 1. (Left) Networked group anagram game (NGAG) configuration where each
player (human subject) has three initial letters (in blue) and two neighbors. This con-
figuration is a circle-5 graph, Circ5. (Middle) Illustrative actions of players in the game.
Players can use a letter any number of times, as evidenced by player 2 forming meet
with letters m, e, and t. (Right) Experimental data on number of words formed by
players in time; there is variability among player behaviors.

It is seen that the behaviors of players consist of multiple actions, i.e., request-
ing letters, replying to a request, forming words, or idle (thinking). Player perfor-
mance is affected by these interactions. For example, the more letters a person
has, the more words that she can presumably form. There are various uncer-
tainties in terms of players’ behaviors and the numbers of words formed in the
team effort. Moreover, the heterogenous characteristics of players can involve
contrastive behaviors, such as some players rarely requesting letters from their
neighbors, while others request several. Therefore, it is of great importance to
understand the uncertainty of the NGAG, and to have a flexible framework for
quantifying the uncertainty of contrastive behaviors of players in the game.

In this work, our goals are to: (i) build explainable models of game player
behaviors that quantify contrastive behaviors in terms of worst, average, and best
performance based on game data; (ii) construct agent-based models (ABMs) and
perform agent-based simulations (ABSs) using these models; and (iii) evaluate
the model building methodology and understand the impact of uncertainty for
these models.
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Our exemplar is the NGAG, but the proposed approach can be used in other
networked games (e.g., [4,6,11,12]) and with observational data (e.g., [21]) where
human behavior data are collected. Such behaviors are notorious for having sig-
nificant uncertainty across players [8,19,20]. Consequently, uncertainty quan-
tification (UQ) methods are essential in complicated games like ours, where:
(i) players have several types of actions that they can take (e.g., form word,
request letter), (ii) players can take these actions many times throughout a
game, and (iii) we seek to combine behaviors of a collection of game players
in order to build one model of behavior (because there is insufficient data to
generate a model from one player’s game data).

One use of such models is analogous to the earlier work cited above. A human
subject could be embedded in a networked anagram game where other players are
bots. Skill levels of the bots are controlled (e.g., as all high performers or all worst
performers, with the models developed in this study). The goal is to understand
how players attribute their success or failure, in a group setting, for different
pre-determined bot play performance values and network configurations. These
types of questions—in group settings—are in the realm of social psychology [3].
This is analogous to individual anagram games wherein experimenters found
that they could control solution times by varying letter order [13].

Novelty of Our Work. The novelty of this work unfolds as follows. First,
different from the previous work in [10], our current method is not restricted
to clustering of players to differentiate the heterogeneous behaviors of players.
The key idea of the proposed method is leveraging the uncertainty of model
parameters to quantify the uncertainty of players’ behaviors. Specifically, we
propose a novel approach of mapping model parameters to the probabilities of
players’ actions, to better represent the uncertainty of behaviors in the game.

Second, we propose a versatile uncertainty quantification (VUQ) framework
to enable the quantification of contrastive behaviors in terms of worst, average,
and best performance to better understand player behaviors based on game data.
Different from the previous work in [10], the proposed framework takes advantage
of the (1−α) confidence set of model parameters to enable the quantification of
contrastive behaviors with appealing visualization. Third, we integrate the VUQ
framework into an ABS framework.

1.2 Our Contributions and Their Implications

Our first contribution is a VUQ approach to UQ. The proposed VUQ method can
be used to understand characteristics of a game, including contrastive behaviors,
bot effects in the network, and demographic differences of players. We use a
multinomial logistic regression model to characterize the probabilities πij of a
player taking a particular action aj at time (t + 1) based on a state vector and
the player’s action ai at t. Uncertainty is embedded in a parameter matrix BBB(i),
as described in Equation (1). We employ a sampling technique that uses contours
of (1 − α) × 100% confidence regions to construct BBB(i) in terms of πij . We thus
quantify uncertainty with BBB(i) via πij . Preliminaries (i.e., previous work that
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serves as the point of departure for our methods here) are provided in Sect. 3
and our methods are presented in Sect. 4.

The second contribution is the models that result from the VUQ methods and
their use in an agent-based modeling and simulation (ABMS) platform. From
the data for a particular collection of players, we determine worst, average, and
best player models. These models are integrated into an ABMS platform so
that NGAGs can be simulated for any number of players with different levels
of performance, any specified communication network, and different numbers of
initial letter assignments per player. Our ABMS work and illustrative results are
in Sect. 6. We demonstrate, for example, that the number of words formed by
players in a game increases by 25% in going from worst to best behavior. This is
an example of contrastive behavior: a contrast (difference) in results produced
by differences in models.

Our third contribution is to illustrate important implications of the preced-
ing two contributions. The proposed VUQ significantly enhances model trans-
parency and model explainablity [14], as well as elaborates the impact of data
quality (sufficiency versus scarcity). By mapping model parameter uncertainty
to the uncertainty of players’ behaviors in terms of possible game actions, our
method provides a useful technique to make UQ more transparent in term of
the players’ behaviors. The use of a (1 − α) × 100% confidence set provides a
clear and simple tool to visualize the effects of the uncertainty by sampling mul-
tiple model parameters from the confidence set. This is similar in spirit to other
sampling techniques used to generate graphs [7]. Moreover, the comprehensive
quantification of uncertainty of contrastive behaviors surprisingly uncovers the
impact of data scarcity and data sufficiency in the modeling and uncertainty
quantification of data. We provide concrete examples in Sect. 5.

2 Related Work

Modeling of Group Anagram Games. An ABM was constructed from
NGAG experiments in [5,15]. The model computed player behaviors in time.
The model also accounted for the number of neighbors that a player (agent)
had in the anagram interaction network. In [10], behavior models were made
more parsimonious by clustering players based on experimental game data and
their degrees k in the game network. Each model was based on the average
behavior within a cluster. This current work differs from the above works in
that we are analyzing each cluster to produce models for worst, average, and
best performance behaviors per cluster. Hence, in this work, an agent’s assigned
model is based on its degree in the network, cluster number, and performance
specification.

Uncertainty Quantification Methods and Analyses. Experimental uncer-
tainty and parameter uncertainty are two common sources of uncertainty. Alam
et al. [1] use design of experiments (DoE) to quantify experimental uncertainty
and analyze sensitivity. Regression models and Bayesian approaches are com-
monly used to quantify parameter uncertainty. For example, Arendt et al. [2]
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quantify uncertainty using gaussian process and the variance of posterior dis-
tribution. Simulation-based modeling and analyses are also used for uncertainty
quantification [16,17]. In this work, we aim to quantify uncertainty in terms of
both model parameters and players’ behaviors.

3 Previous Models

Our models use a network configuration to capture communication among game
players. A player’s neighbors are the players at distance 1 in the NGAG (see
Fig. 1). In our previous work [10], a clustering-based UQ method is used for
building ABMs of human behavior in the NGAG. The UQ approach in [10]
focuses on the following aspects. First, players are partitioned based on their
activity in a game by creating two variables as xengagement and xword. Here
xengagement is the sum of the number of requests and number of replies of a
player, and xword is the number of words a player forms in a game. We con-
ducted hypothesis testing, and the results showed that we can categorize players
into two groups: those players with two neighbors (group g = 1) and those play-
ers with three or more neighbors (group g = 2). Second, players are further
partitioned within each group. We used the k-means clustering method [9] to
form four clusters based on the Bayesian information criterion. Specifically, we
cluster player behaviors in terms of xengagement and xword, so that players in a
single cluster have similar numbers of actions in a NGAG. Third, player behav-
iors in a game are modeled and four variables are introduced in Equation (1)
below: size ZB(t) of the buffer of letter requests that player v has yet to reply
to at time t; number ZL(t) of letters that v has available to use (i.e., in hand)
at t to form words; number ZW (t) of valid words that v has formed up to t;
and number ZC(t) of consecutive time steps that v has taken the same action.
Let z = (1, ZB(t), ZL(t), ZW (t), ZC(t))5×1. Let action a1 represent thinking or
idle, a2 represent letter reply, a3 represent requesting a letter, and a4 represent
forming a word. The multinomial logistic regression is used to model πij—the
probability of a player taking action aj at time t + 1, given that the player took
action ai at time t—as

πij =
exp(z′βββ(i)

j )
∑4

l=1 exp(z′βββ(i)
l )

, j = 1, 2, 3, 4 (1)

where βββ
(i)
j = (β(i)

j1 , . . . , β
(i)
j,5)

′ are the corresponding regression coefficients. For
a given action ai at time t, the parameters can be expressed as a matrix
BBB(i) = (β(i)

j,h)4×5 for i = 1, . . . , 4. Note that the estimation of BBB(i) generates
a corresponding transition probability matrix which quantifies the activity lev-
els of players in the game. In previous work and this current work, we use all
NGAG experimental data for parameter estimation.

As a result, one can infer the activity level of a player in a cluster based on
its engagement and words [10]. However, there are two limitations of such an
approach. First, if we cluster players using a large number of variables, then it
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would be impossible to tell the activity level of a cluster based on a high dimen-
sion plot. Thus, the approach requires a more flexible method to infer which
model parameters correspond to contrastive behaviors (i.e., worst, average, and
best). Second, there are different levels of variability within clusters of players
in going from worst to best behavior. The variabilities of some clusters may be
small while the variabilities of other clusters may be large. Hence, it is important
to quantify the within-cluster uncertainties and integrate them with the ABMs.

4 The Proposed VUQ Method

In a group anagram game, it is important to identify which players are more
active and which players are less active, i.e., contrastive behaviors of players.
As shown in our previous work [10], players have different behaviors in different
clusters. Also, it is essential to quantify uncertainties of players within clusters.

To quantify the uncertainty within a cluster, one possible method is to start
from the parameter BBB(i) matrix. Since BBB(i) is estimated from the multinomial
logistic regression, it has an asymptotic normal distribution. Thus, we can draw
random samples from the asymptotic normal distribution, and these random
samples can represent the variability of that cluster. Moreover, because we are
interested in player models with contrastive behaviors, we draw random samples
on the contour of (1 − α) × 100% confidence region. However, the sampled BBB(i)

matrices do not have a clear interpretation to quantify the corresponding activity
levels (e.g., worst, average, best). While it is difficult to identify the activity level
of an agent from the BBB(i) matrix, it is easy to identify the activity level from the
probability vector π = (πi1, . . . , πi4). It is known than an agent is more active if
the to-idle probability (πi1) is small and less active if the to-idle probability is
large. To obtain the probability vector, we need the zzz vector. Thus, we use NGAG
data (i.e., training data) to produce representative zzz vectors. By using these zzz
vectors, we can compute a set of probability vectors and calculate the mean of
to-idle probabilities. Then the mean to-idle probability is used to quantify the
activity level of an agent via the BBB(i) matrix. The following steps summarize the
proposed method of uncertainty quantification within a cluster.

We first transform the estimated B̂BB
(i)

matrix to vector β̂ββ
(i)

, then use the

asymptotic normal distribution of parameter estimators β̂ββ
(i)

based on the asymp-
totic property of maximum likelihood estimators. The superscript i denotes the

initial state. Let B̂BB = β̂ββ
(i)

, β̂ββ = β̂ββ
(i)

= (β̂ββ
(i)T

2 , β̂ββ
(i)T

3 , β̂ββ
(i)T

4 )T , then β̂ββ follows a
multivariate normal distribution, β̂ββ ∼ MN(μ̂μμ, Σ̂ΣΣ).

1. Step 1: Draw R random samples (βββr or BBBr, where r = 1, . . . , R) on the (1 −
α)×100% confidence contour of the estimated β̂ββ matrix. The (1 − α)×100%
confidence region Sβ̂ββ is defined as

Pr(βββ ∈ Sβ̂ββ) = (1 − α) × 100%, (2)

(βββ − β̂ββ)TΣ̂ΣΣ
−1

(βββ − β̂ββ) = χ2
d(1 − α), (3)
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where Σ̂ΣΣ is the estimated covariance matrix of β̂ββ, and χ2
d(1−α) is the (1−α)

quantile of Chi-squared distribution with d degrees of freedom.
2. Step 2: For each βββr drawn in step 1, apply the training data to Eq. 1

to produce n probablity vectors, π̂ππr,l, where l = 1, . . . , n and n is the
size of the training data. Then calculate the mean probability, π̄ππr =
1
n

∑n
l=1 π̂ππr,l = (π̄r

1, π̄
r
2, π̄

r
3, π̄

r
4)

T . The mean of to-idle probability is denoted
as π̄r

1 = 1
n

∑n
l=1 π̂r,l

1 . Then we get a set of mean to-idle probabilities,
π̄r
1, r = 1, . . . , R.

3. Step 3: The mean to-idle probabilities represent the variability within the
cluster. The βββr vector or BBBr matrix with low mean to-idle probability is more
active, and the βββr or BBBr matrix with high mean to-idle probability is less
active. The BBBr matrix with the maximum π̄r

1 is selected as the worst matrix,
and the BBBr matrix with the minimum π̄r

1 is selected as the best matrix.

One advantage of this proposed method is that we can quantitatively com-
pare the activity levels of two clusters using the mean to-idle probability. Pre-
viously, we relied on xengagement and xword. The second advantage is that this
method can be generalized in two aspects. First, currently we quantify the activ-
ity level of a cluster. However, we can easily quantify the activity level of a player
using the same method. Thus, we can compare activity levels among different
players/agents. Second, we use the mean to-idle probability as the criterion for
activity level. We can easily use other criterion based on our needs or goals. For
example, if we are interested in the activity level of forming words, we can use
the mean to-word probability (πi4) as the criterion.

Note that there can be data scarcity in some clusters, in which case the
distribution of BBBr would have very large variance. For example, if there is only
one to-request transition in the game data, then the estimated parameter for
to-request in BBBr can be extremely large. Then the probability of the to-request
transition could become close to 1 or 0. If the initial state is request and the
probability of to-request is close to 1, then the model will fall into a request-to-
request “infinite” loop. This potential issue of data scarcity is avoided as follows.
First, if the minimum π̄ππr(idle) is very small (π̄ππr(idle) < 0.01), then we choose the
BBBr in which π̄ππr(idle) is at the 10% percentile, instead of the minimum. Second,
the worst and best BBB matrix matrices are replaced by the mean BBB matrix if
any of these criteria are met: (i) all of the numbers of to-reply, to-request, and
to-word transitions are less than 5, or (ii) extremely large values appear in BBB.

5 Model Evaluation

In this section, the variabilities within clusters will be investigated and pre-
sented in terms of mean transition probabilities. For each group, cluster, and
initial state, 1000 random BBBr, r = 1, . . . , 1000 matrices are draw from the 95%
confidence contour Sβ̂ββ . Then the mean transition probabilities are calculated
using the training data in which initial states are the same as those of the BBBr

matrices. The histogram of mean transition probabilties are presented in Figs. 2
and 3.
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Fig. 2. Histograms of mean to-word probabilities of random BBB matrices for the four
clusters in group 1. The initial state is idle and the BBB matrices samples are drawn
on the contour of the 95% confidence region. The plots from left to right are for cluster
1, 2, 3, and 4.

Fig. 3. The top four histograms are for group 1, cluster 3 where the initial state is
idle and the bottom four histograms are for group 1, cluster 2 where the initial state
is request. The BBB matrices samples are drawn on the contour of the 95% confidence
region. The plots in the first column are to-idle, the plots in the second column are
to-reply, the plots in the third column are to-request, and the plots in the fourth
column are to-word.

Figure 2 reports the histograms of mean to-word probabilities of random
BBB matrices for clusters in group 1. From the histograms in Fig. 2, it is clear
that there are within-cluster variabilities in terms of forming words. It further
confirms the need of VUQ for quantifying the contrastive behaviors of players.
Figure 3 shows the histograms of mean transition probabilities, where the top
panel is for the group 1, cluster 3 with initial state being idle and the bottom
panel is for group 1, cluster 2 with initial state being request. It is seen that the
top four histograms show small variability because sufficient data are available.
However, the data can be insufficient in some other cases as reported in the
seventh row in Table 1, where there are very few data points for the player
actions of reply, request, word. As shown in the bottom four plots of Fig. 3, the
variability becomes very large and even ranges from 0 to 1, which is not realistic.
Therefore, the mean BBB matrices are used in this case for both the worst and best
behaviors. Such a limitation of the proposed method is due to data scarcity in
the numbers of some actions, where the variability of the model parameters
becomes unrealistically large. These issues illustrate the importance of model
transparency. A summary of actions for some clusters are shown in the Table 1.
It is seen that the majority of clusters have sufficient data while some encounter
data scarcity in some actions.
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Table 1. Summary of actions in selected group, cluster, and initial state triples. The
first column is the group ID, with value 1 or 2. The second column is the cluster ID,
which ranges from 1 to 4. The third column is the initial state, which ranges from 1
to 4 (idle, reply, request, word). The next four columns are the number of actions by
players in games. For example, the number in the idle column is the number of to-idle
actions. The last column shows the data sufficiency.

group cluster initial state idle reply request word data sufficiency

1 1 1 8311 28 70 230 sufficient data

1 3 1 17399 259 366 802 sufficient data

1 4 1 8593 110 185 993 sufficient data

2 2 1 17310 282 413 902 sufficient data

2 3 4 801 16 0 44 sufficient data

2 4 1 1572 33 71 344 sufficient data

1 2 3 306 2 3 0 data scarcity

2 1 4 199 1 0 0 data scarcity

6 Simulations and Results

6.1 Simulation Parameters and Process

We use the models from Sect. 4 to develop ABMs for players in the NGAG. We
confine this work to the networked game configuration of Fig. 4, which is a circle
graph on six players. All players have behaviors in group 1 because all players
have degree k = 2. The symmetry of the setup enables us to assess variability
in simulation results. Table 2 contains the parameters in simulations. We limit
our simulation conditions owing to space limitations; the simulation system can
handle agents of any group and cluster. Also, we use a graph structure that is
similar to the network configurations in the NGAG.

Fig. 4. Graph of six anagram
game players, each with two
neighbors (Circ6).

Table 2. Summary of the parameters and their val-
ues used in the simulations.

Parameter Description

Network Circ6 (each of six players has degree 2)

Num. of initial

letters n�

Four per player

Number of

groups

One. Group g = 1 is for agents with degree ≤2

Number of

clusters

There are four clusters within group g = 1

Number of

different

performances

For each cluster, there are three models of

game player performance: worst, average, and

best. These are the contrastive behaviors

A simulation consists of 50 instances. Each instance is a computation from
time t = 0 to t = 300 s, consistent with conditions in experiments. That is, each
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instance is a simulation of one NGAG. From experimental NGAG data, players
do not take successive actions in less than one second. Thus, we set one time
increment in a simulation to one second. All players are assigned n� = 4 letters
and model parameters based on group number (always group 1 in these experi-
ments), cluster number, and performance level. Players request letters from their
neighbors, reply to letter requests, form words, and think (idle). A simulation
outputs all player actions at all times, similar to the data shown in Fig. 1. Aver-
age values and median and error bars in boxplots below are produced from all
player data, at each time t ∈ [0, 300] over all 50 instances. Since players are
paid in the game in direct proportion to the number of words that they form,
increasing numbers of actions (particularly in forming words) means increasing
performance.

6.2 Simulation Results

Figure 5 contains data for group 1, cluster 3, and worst performance. The first
plot provides average word history curves for each of the six players. The next
two plots of the figure show time histories for all actions for players 0 and 1,
respectively. These actions are replies received (replRec), replies sent (replSent),
requests received (reqRec), requests sent (reqSent), and words formed (words).
Requests sent and replies received are the lesser curves because they are both
bounded by n� = 4 letters for each player. Requests received and replies sent are
greater curves because their numbers are bounded above by k · n� = 2 · 4 = 8.

(a) word counts all agents (b) behavior agent 0 (c) behavior agent 1

Fig. 5. Results of anagram simulations with six players forming a Circ6 graph. All
players have behaviors assigned based on group 1, cluster 3, and worst performance.
(a) word count histories for all six agents, (b) action histories for agent 0, and (c) action
histories for agent 1.

Figure 6 contains word count histories for all six players, for cluster 3, and
moving left to right, for worst, average, and best performance, respectively. (Fig-
ures 5a and 6a are the same plot.) It is clear that the numbers of words formed
by players increase in going from worst to best behavior models by 25%.

Figure 7 contains boxplots for each of the four clusters for group 1. Each
box is for the total number of actions (which is the sum of the total number
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(a) worst performance (b) average behavior (c) best behavior

Fig. 6. Results of anagram simulations with six players forming a Circ6 graph. All
players have behaviors assigned based on group 1, cluster 3. Plots are word count
histories for all players in a simulation for: (a) worst, (b) average, and (c) best behavior.

formed words, requested letters, and replies to letter requests), on a per-player
basis, across all six players in a simulation. Thus, each box is comprised of 300
data points (=6 players · 50 simulation instances). For each of the first three
clusters, the counts of actions increases from worst (W) to average (A) to best
(B) performance models. The numbers of actions, for a given performance value,
also increases across the first three clusters, consistent with the experimental
data. The fourth cluster is interesting and different. The worst, average, and best
performance models do not generate monotonic results. The behavior appears to
saturate with cluster 4, the cluster that produces the greatest numbers of player
actions.

(a) Cluster 1 (b) Cluster-2 (c) Cluster 3 (d) Cluster 4

Fig. 7. Results across all clusters and all performance values, where boxplots are given
for performance types worst (W), average (A), and best (B) behavior for each cluster.
Boxes are per-player numbers of total actions in a simulated game, and represent the
sum of form words, request letters, and reply to letter requests. The clusters are: (a) 1,
(b) 2, (c) 3, and (d) 4. Labels on x-axis are “C”, cluster number, and performance
type.

7 Conclusion

We provide motivation and novelty of our work, along with contributions, in
Sect. 1. A key aspect of the models, that enable explainability of results, is that
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we map model parameters to player actions in a game. For our game, this is not
straight-forward and hence may serve as a template of how this may be done in
other game settings. We believe that our approach can be used with other human
subject game data, including complicated experiments like ours with different
actions types and the ability of players to repeat action types over time. Our
current method uses asymptotic distributions to infer the uncertainty of model
parameters, which may not be appropriate for some problems. Alternatively, a
Bayesian approach for quantifying uncertainty can be useful.
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